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Bound states of dark solitons in the quintic Ginzburg-Landau equation
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We report results of systematic simulations of interactions between dark solitons in the complex quintic
Ginzburg-Landau equation. Bound states of the solitons are found. The bound states~which are not possible in
the cubic equation! exist in a wide range of parameters and are highly stable, providing an example of a stable
bound state of solitary pulses in a generalized Ginzburg-Landau equation.@S1063-651X~97!08508-5#

PACS number~s!: 42.65.Tg
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I. INTRODUCTION

The particlelike nature of solitons most clearly demo
strates itself in interactions between them. For bright s
tons, an outcome of the interaction depends on amplitu
velocities, phases, and initial separation between the soli
@1,2#. For initially motionless ones, the interaction is attra
tion or repulsion, depending on their relative phase. For d
solitons, the picture is simpler, as two adjacent solitons m
be in phase orp out of phase only. In addition, the amplitud
and velocity of the dark soliton are related, hence one
dealing with fewer arbitrary parameters. Two initially m
tionless~i.e., black! dark solitons always repel each other@3#.

The soliton interaction is a very sensitive effect that
greatly affected by perturbations@1,4–6#. It is known that for
bright solitons, some perturbations tend to attenuate the
teraction and may even lead to formation of bound sta
~BS’s!. For the complex Ginzburg-Landau~GL! equation
@which may be regarded as a perturbed form of the nonlin
Schrödinger~NLS! equation#, such a BS, with the phase di
ference 0 orp between the solitons was predicted in@7# ~for
more details see@8#!. The existence of this BS has bee
confirmed numerically@9,10#, although the subsequent stu
ies have shown that apparently it is weakly unstable to p
turbations of the relative phase between the two solit
@11,12#. The bound state has been observed also numeric
in the dispersionless case@13#. Finally, it is relevant to notice
that BS can exist in a different model, viz., the drive
damped NLS equation, where the phases of the interac
solitons are independently locked to the driving force@14#.
However, the separation between the bound solitons in
model is twice as large as in the GL equation.

The problem of existence of BS’s ofdark solitons was not
addressed thus far. One of the reasons is that the perturb
theory for dark solitons, which allows one to analyze th
dynamics under the action of perturbations in a consis
way ~in particular, their stability and interactions!, has been
derived only recently@15#. The stable BS of the dark soliton
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is not only an interesting object for fundamental resear
but may have practical importance too. Very recently, eff
tive data transmission in nonlinear optical fibers has b
demonstrated using dark solitons@16#. The relevance of the
BS problem for the analysis of the operation of a solito
based communication line is obvious. It is believed that d
solitons have some advantages over bright ones, in par
lar, a lower Gordon-Haus jitter@17#.

In this paper we analyze interactions between the d
solitons in the presence of perturbations, namely, in the c
plex quintic GL equation~a perturbed NLS equation with
nonlinear saturable gain!. Special attention is paid to the for
mation and stability of the two-soliton BS’s. The eventu
result is that the BS’s do exist and appear to be fully stable
the quintic equation. As a matter of fact, this is anexample
of an absolutely stable BS of solitary pulses in an intrin
cally driven generalized GL equation~the driven damped
NLS equation, where BS’s were found earlier@14#, does not
belong to this class of the models!.

The rest of the paper is organized as follows. In Sec. II
introduce the GL equation and discuss the existence and
bility of its dark-soliton solutions. Section III is devoted t
an analysis of the interaction between the dark solitons
Sec. IV we demonstrate the existence of stable BS’s in
quintic GL equation. Section V concludes the paper.

II. THE GINZBURG-LANDAU EQUATION
AND ITS DARK-SOLITON SOLITON SOLUTIONS

We take the perturbed NLS equation in the form

i
]u

]t
1

1

2

]2u

]x2
2uuu2u5 iP@u#, ~1!

whereu5u(z,t) is the complex field,t is the evolution vari-
able~‘‘time’’ !, andx is a spatial variable~‘‘space’’!. Notice
that, in application to the nonlinear optical fibers,t is actu-
ally the propagation distance, whilex is the so-called re-
duced time. The real termP@u# represents a perturbation th
combines gains and losses.

We are interested in dark-soliton solutions on a nonv
ishing background,uuu→u0 for uxu→`. We introduce the
1088 © 1998 The American Physical Society
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57 1089BOUND STATES OF DARK SOLITONS IN THE . . .
new variablesu[u0eiu0
2tv(t,x), z[u0

2t, and j[u0x, in
terms of which the equation takes the form

i
]v
]z

1
1

2

]2v

]j2
2~ uvu221!v5 iP@v#. ~2!

For P50 this equation has the commonly known exact da
soliton solution

v~z,j!5cosftanhZ2 isinf, ~3!

whereZ[(j2zsinf)cosf. The soliton amplitude and veloc
ity are determined by the~constant! soliton phase anglef,
ufu,p/2. The phase shift across the solitonF is connected
with f by a simple relationF5p22f.

We now choose the perturbation in the form

P@v#5dv1euvu2v1muvu4v, ~4!

whered, e, and m are, respectively, the coefficients of th
linear, cubic, and quintic gain or dissipation~depending on
their signs!. We intentionally omit the diffusion term~spec-
tral filtering, in terms of the fiber optics! because we suspec
that it may slow down the interaction and also because
effect of this term on the dark soliton has not yet been st
ied by means of the perturbation theory. For convenience
represent the coefficients in the form

d[2ke, m[2~12k!e. ~5!

In terms of this notation, both the cw background and d
solitons itself are known to be stable at 1/6,k,1/2 @18#.

If m50, Eqs.~2! and ~4! are known as cubic GL equa
tions, which have an exact dark-soliton~‘‘hole’’ ! solution
@19# ,

v~j!5tanh~aj!exp@ igcoshln~aj!#, ~6!

where real constantsa andg may be found by direct substi
tution of Eq.~6! into Eq.~2!. Note the nontrivial phase struc

FIG. 1. Separation between the dark solitons atz5200 vs the
initial separationD0. e varies between 0~top curve! and 1~bottom
curve!. The inset shows the part of the figure related to the bou
state formation.
-
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ture~‘‘chirp,’’ in terms of the fiber optics! of the dark soliton
~6!. This means that the dark soliton is in fact a sink th
absorbs incident waves. If the system as a whole is i
stationary state~i.e., if the background does not decay!, ab-
sorption of energy by the sink must be compensated
There are other localized solutions~sources! that provide for
this @20,21#. The source looks like a hump on the bac
ground; see, e.g., Figs. 2 and 4 of Ref.@22#. The existence of
such humps prevents the dark solitons from an interact
‘‘insulating’’ them from each other.

It should be noted that the perturbation theory predi
that the dark solitons are unstable in the cubic GL equa
@15#, although the analysis did not take into account t
above-mentioned diffusion~spectral filtering! term. Numeri-
cal simulations allowed one to identify a small region whe
the quiescent dark~black! soliton is stable@22# . However,
one cannot use these stable solitons to study the interac
between them because everywhere in this region a di
interaction between dark solitons is prevented by a sou
that is formed between them.

We have found that the dark-soliton interaction a
bound-state formation are possible in the full quintic G
equation. An exact solution in this case is known only in
limited range of parameters@21#. Nevertheless, the perturba
tion theory allows one to identify the stability range for da
solitons, which is much broader than that for the cubic G
equation@18#. In this case, the phase modulation is mu
weaker, sources are not formed, and the soliton interac
may be studied in detail.

III. SOLITON INTERACTION

First, we recall how the dark-soliton interaction occurs
the unperturbed NLS equation. Two initially motionless da
solitons always repel each other@3#. If one starts from an
initial condition in the form

v0~j!5tanh~j2D0!tanh~j1D0!, ~7!

then twogray solitons are eventually formed. Their depa
ture from the black one~i.e., the phase angleufu) is roughly

-

FIG. 2. Dynamics of the soliton interaction for differente, vary-
ing from e50 ~top curve! to e50.8 ~bottom curve!, at D052.25,
k50.4.
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inversely proportional toD0, i.e., for strongly overlapping
solitons ~small D0) ufu is large and vice versa. In the nu
merical experiments, the soliton interaction is usually stud
in the form of a dependence of the output~final! separation
Dout vs the input~initial! separationD0. This dependence fo
the dark solitons in the unperturbed NLS equation is d
played in Fig. 1~the bold curve!. As one can see, the repu
sion is strongest for smallD0 ~although the difference from
the case of the bright solitons is thatDout is finite at
D050), then Dout attains a minimum, and finally it ap
proachesD0 at largeD0. The empirical solution for the soli
ton interaction has been given in Ref.@3# and it describes the
soliton interaction with very good precision.

If we add the perturbation, we can expect two distin
scenarios in the simulations. In the first case, the perturba
affects each soliton but not the interaction. This means
each of two moving gray solitons that are initially forme
from the initial condition~7! transforms into a black soliton
gradually dropping its velocity. Finally, two parallel prop
gating solitons are formed; however, this cannot be attribu
to the bound-state formation~see, e.g.,@18#!. The interaction
is affected only indirectly as the solitons acquire a differe

FIG. 3. Same as in Fig. 2 forD052.2, . . .,3.0 and fixed
e50.4.

FIG. 4. Profiles of the bound states fore taking values from
0.2 ~top curve! to 1.0 ~bottom curve!.
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width. In the alternative case, the perturbation affects
only each soliton separately, but the interaction betwe
them as well. In particular, a BS may be formed. The B
formation may be observed as independent of the ou
separationDout of the input oneD0.

In the first series of simulations, we fixD052.25 and vary
e ~see Fig. 2!. As one can see, the perturbation~saturable
gain! is braking the motion of the solitons. However, starti
from e50.4, the motion of the solitons becomes nonunifo
and this cannot be explained by the action of the perturba
on each soliton individually.

In the next series of simulations, we increase the pro
gation time from 50 to 200, fixe50.4, and study the inter
action for several values ofD0 ~Fig. 3!. One can clearly see
formation of the BS, with the separation between the solito
DBS52.25. Note the oscillatory type of the soliton trajecto
for D052 and 2.2.

Now we can return toDout(D0) dependence, which is
most easily observed numerically~see the inset in Fig. 1!.
The BS formation may be observed starting frome50.2 as
the nearly horizontal asymptotic part of theDout(D0) curve.
As e increases, the size of this part also increases, and
e.0.9 the bound state is formed forany initial separation in
the @0,4# range.

FIG. 5. Separation between the dark solitons in the bound s
vs e at z5200.

FIG. 6. Example of formation of the bound state from the so
tons withf150 andf25p/24.
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Figure 4 shows the profiles of the established BS’s
several values ofe. As one can see, solitons are strong
overlapped in the bound states, even at smalle, and the
overlapping increases withe. Note that the separation be
tween solitons in the BS rather weakly depends one ~see
Fig. 5!.

To check the stability of the BS of two dark solitons, w
used a perturbed asymmetric initial condition, viz., one s
ton with f150 and a second soliton withf2Þ0. The simu-
lation shows that after some transition process, the bo
state is formed and remains stable~Fig. 6!.

Finally, we observed the multiple-soliton bound stat
which consist of three, four, or more solitons. In fact, su
structures have been predicted in Ref.@7# for bright solitons.
t.

,

.

r

i-

d

,

However, the inner soliton in the multiple-pulse BS expe
ences different perturbation in comparison to outer solito
So such BS have never been observed because of the i
bility to phase perturbations. In our case, the BS is hig
stable and it may consist of an arbitrary number of solito

IV. CONCLUSION

We have simulated interactions of dark solitons in t
quintic Ginzburg-Landau equation. We observe stable tw
soliton bound states. This is an example of a stable bo
state of solitary pulses governed by a generalized Ginzb
Landau equation.
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